Preparation of a chemically anchored phospholipid monolayer on an acrylated polymer substrate.
نویسندگان
چکیده
This paper describes a strategy for designing a chemically anchored phospholipid monolayer that could be used as coating materials for biomedical implants. To make a chemically anchored phospholipid monolayer on the polymer substrate, we prepared the mono-acrylated phospholipid (1-palmitoyl-2-[12-(acryloyloxy)-dodecanoyl]-sn-glycero-3-phosphocholine; acryloyl-PC) and the acrylated polymer (poly(octadecylacrylate-co-4-acryloyloxy butylacrylate)), which was synthesized by the acrylation of poly(octadecyl acrylate-co-hydroxybutyl acrylate, poly(OA-co-HA)) with acryloyl chloride. The chemically anchored phospholipid monolayer was prepared by using in situ photopolymerization of a pre-assembled phospholipid monolayer, produced by lipid vesicle fusion, onto the acrylated polymer coated silicon wafer. Optimal condition of vesicle fusion and irradiation time was determined from the degree of hydrophilicity rendered by the polymerized phospholipid surface. The physicochemical properties of polymerized phospholipid monolayer on the substrate were evaluated using water contact angle, field-emission scanning electron micrograph (FE-SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). These results confirmed that the polymerized phospholipid monolayer was chemically anchored on the acrylated polymer substrate. The chemically anchored phospholipid monolayer was stable in aqueous condition for 2 weeks, but the physically adsorbed phospholipid monolayer got removed within 1 day. Moreover, the polymerized phospholipid monolayer also suppressed albumin absorption and platelet adhesion, in vitro. This polymerized phospholipid monolayer provides a new biomimetic system for coating medical devises.
منابع مشابه
Preparation of a stable phospholipid monolayer grafted onto a methacryloyl-terminated substrate as blood compatible materials.
We have prepared a surface-grafted phospholipid monolayer by in situ polymerization carried out at the interface between a pre-assembled phospholipid monolayer and a methacryloyl-terminated substrate. The phospholipid containing an acryloyl moiety, 1-stearoyl-2-[12-(acryloyloxy)-dodecanoyll-sn-glycero-3-phosphocholine (acryloyl-PC), was pre-assembled by vesicle fusion onto methacryloyl-terminat...
متن کاملEfficient synthesis of xanthene derivatives in aqueous media in the presence of Cu-anchored furfural imine-functionalized halloysite
A novel hybrid catalyst based on grafting Cu on furfural imine-functionalized halloysite was designed, characterized and used for promoting synthesis of xanthene derivatives via three- component reaction of benzaldehyde derivatives, dimedone, and β-naphthol in aqueous media and under mild reaction condition. The results established high catalytic activity of the hybrid system, which was superio...
متن کاملEfficient synthesis of xanthene derivatives in aqueous media in the presence of Cu-anchored furfural imine-functionalized halloysite
A novel hybrid catalyst based on grafting Cu on furfural imine-functionalized halloysite was designed, characterized and used for promoting synthesis of xanthene derivatives via three- component reaction of benzaldehyde derivatives, dimedone, and β-naphthol in aqueous media and under mild reaction condition. The results established high catalytic activity of the hybrid system, which was superio...
متن کاملPolymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry.
This neutron reflectometry study evaluates the structures resulting from different methods of preparing polymer-cushioned lipid bilayers. Four different techniques to deposit a dimyristoylphosphatidylcholine (DMPC) bilayer onto a polyethylenimine (PEI)-coated quartz substrate were examined: 1) vesicle adsorption onto a previously dried polymer layer; 2) vesicle adsorption onto a bare substrate,...
متن کاملSpatial Rearrangement and Mobility Heterogeneity of an Anionic Lipid Monolayer Induced by the Anchoring of Cationic Semiflexible Polymer Chains
We use Monte Carlo simulations to investigate the interactions between cationic semiflexible polymer chains and a model fluid lipid monolayer composed of charge-neutral phosphatidyl-choline (PC), tetravalent anionic phosphatidylinositol 4,5-bisphosphate (PIP2), and univalent anionic phosphatidylserine (PS) lipids. In particular, we explore how chain rigidity and polymer concentration influence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 26 17 شماره
صفحات -
تاریخ انتشار 2005